我想讲一个现象,它每时每刻在你身边发生着,但却很少被你所注意,这个现象叫做“无人化”。
“无人化”和一个选择
就像我在《未来已来(一)——技术变革》中说的一样:深圳华侨城的沃尔玛里,人没了。我平时会喜欢下厨,下厨要买菜,买菜要称重,称重从前需要人。但是,现在却是我自己在做这件事。更甚至,买单也是我在机器的帮助下自己完成。
我翻过超市的发展史。它是一个存在了上百年的那么个东西。在最开始,我们在一个大商超买买买,再推到买单的地方付钱结账;后来,我们在一个大商超买买买,再推到买单的地方刷卡结账;再后来,我们用手机支付……但这一切,都没离开“人”的存在。
今天,事情却发生了变化。
超市里没人了并不怎么可怕,可怕的是我们对类似的事情习以为常,以至于很少在这件事上投入更多的思考。
我大学时,有念物流工程的朋友,总开玩笑说自己要不要考一个叉车证,去仓库里扒拉货。但是今天,亚马逊、优衣库这些对仓库有高度依赖的企业,它们的仓库早已换副光景:
,警方通过人脸识别技术,一共抓获5名在逃犯人。
当逃犯们兴冲冲地拿着票走过摄像头,将要入场,此时他们的面部信息已经被抽取出来,实时传到云端,和后端数据库飞速地进行比对。
你能看到:机器不需要模仿人做事的方式,机器只需要模仿,甚至超越人做事的结果,这就够了。
你还能看到:同样是一个图像识别的技术,它可以被应用进各种看上去毫不相干的场景中去。此时,它能创造出巨大的价值。我们可以得到一个等式:人工智能=算法+数据+应用。
面对人工智能,我们能做些什么?
根据这个等式,我们可以盘演,在人工智能的这波机遇里,我们能做什么?
算法,这是个好主意。不过门槛挺高。你要去学数学、计算机两个学科的知识,至少得读个研的知识量。从浅到深,相关的内容大概会有:Python编程,爬虫,数据挖掘,高等数学,机器学习,深度学习……
数据……做人工智能的确需要大量、规整的数据。但,普通人手里,很难有可以训练算法的大量数据。这些数据,往往掌握在大型互联网公司里,如:谷歌/百度有搜索数据,facebook/腾讯有社交数据,亚马逊/阿里有商业行为数据……
前阵子我看过一个报道,说在中国的河南、山东、河北等地的四五线小城里,存在着一种“数据车间”,整个车间看上去仿佛是个网吧的模样,年轻的员工们窝在柔软的沙发里,对着电脑勾勾画画:将一张张图片里的梯子、玫瑰、地毯;梯子、玫瑰、地毯;梯子、玫瑰、地毯;梯子……给标注出来。
他们把这些标注好的数据,发送给大公司。大公司们,会用这些数据去训练算法。一张图,给两分五。
大公司们用高薪聘请到做算法的人才,大公司里有数据。所以,今天的你能够看到,人工智能技术基本都是由这些大公司提供。借助数据和算法,谷歌和facebook提供着精准广告,每年获得百亿美元利润;亚马逊的云计算为无数中小公司提供技术服务,支撑起近万亿美元的市值。
但这并不意味着,普通人在人工智能面前就没有机会。至少做应用,还大有可为。而且,越早去参与,越具备先发优势。
你只需要懂得一些基础的编程能力,就可以调用已经研发好的人工智能技术,把它应用到自己所处的行业中去。让技术,去替代、帮助人来工作。它能降低成本,提高收益,它有利可图。就像把图像识别用进农业、医疗、安防……等等,一样的。
这就好比:不是每个人都可以成为马云,但每个人都可以是淘宝卖家。应用阿里巴巴的技术,去开店铺,能创造价值。应用人工智能技术,也能创造价值。
在浙江省的一所中学,有位李老师发觉到一个现象:有些学生十分内向,不好意思向老师提问,加上老师分配给每个学生的时间有限,很难满足每个学生的学习需求。
他萌生了,去做一个自主答疑机的想法:学生将试卷、习题放在答疑机上扫描,系统便可快速识别题目,给出详细的解析和视频讲解,甚至还可以获得同一道题的多种学习思路。
没过多久,这台机器就被做了出来。因为它应用到的原理非常简单。如果是用Python语言来写,核心代码可能不超过20行。
首先,是把试卷拍张照。接着,调用专门做搜题功能的产品,所提供的接口,把试卷的图片,转换成文字。然后,从海量的试题库当中,找到这个题目的答案和解析,通过显示屏呈现出来。
这就是个很棒的案例。
做技术,还是做应用?是我们现在需要考虑的一个问题。但有一个命题是确定的——编程,是该学一学。你不需要担心它难,我教过了上万人学编程,我知道:如果我们的目标是学会调用已有技术,培养编程思维。那其实还挺简单……
而且学会编程,不只是可以做人工智能。你可以使用代码,让自己平时的许多工作,都自动化完成:图像处理、文档处理、市场分析、网页爬虫、数据分析……
选择Python
编程语言那么多种,该选哪一把铁锹?
答,就是你已经接触过的,Python。
编程语言是有很多没错,但如果我们学编程的目的,是为了参与进人工智能的浪潮,那么首选只能是Python。选择Python不但是安全的,还是必须的。
毕竟,它是人工智能时代的头牌语言,这是在技术界已经达成共识的事。
Python语言帮助人工智能发展更快,人工智能的发展带动更多人去学Python。它们自始至终,都是相辅相成的关系。
(国际电子和电气工程师联合会发布的第五届年度编程语言排行榜,Python名列榜首。)
不仅如此,Python在大数据分析、机器学习、云计算系统、web开发(比如Facebook/Google/豆瓣/知乎,都用Python开发)、游戏脚本……等时下最热门的应用里,都占据着主导地位。
造成这结果的原因,是由Python语言的特性决定的:
- 它够简洁
实现同样的功能,C++需要1000行,java需要300行,但python可能只需要20行。 曾经有个段子是这样描述:
你遇到了一群敌人! 你要怎么办呢?问问你的大将吧! C:拿出一根棍子,一个一个把敌人砸死。 C++:用机关枪。 java:我打电话叫十万个基佬! perl:我会功夫! ruby大喊着拿着武士刀冲上去了。 lisp:我先把敌人分组一下吧! haskell:我们可以用歼星舰啊! PHP:让我们把敌人老死吧! python:用氢弹。
- 它易学,易读
Python语言和人类语言高度相似,掌握Python的基础语法,快则几天,慢则1-2周就够。几乎不需要注释,就能让你读懂Python代码。 接下来,你就可以用它来调用已有技术,去实现自己的项目。
-
它作为胶水语言,便于不同行业的人协作
人工智能的研发,需要来自不同行业的人协作,不只是开发人员,还需要不同领域的科研人员、创意人才参与其中。
Python它跨平台,在windows、mac、linux……等系统上都能运行。 它特别好学。 每个人都可以非常方便地打包自己的代码,别人无需读懂,就能特别方便的调用。
这些特性,让协作的成本变得极低。
学人工智能,从Python开始。
我的session测试
ggg
jjjj
wa hhhh
xxxx
pla
嘎嘎嘎嘎嘎嘎过过过过过过过
test
是的冯绍峰
777
了算了算了算了算了
今天
没有想法
test test 2
test test