未来已来(一)——技术变革

在上个周末,我去了一趟沃尔玛,发现两件神奇的事:

  1. 买菜称重不需要人,顾客自助。

  2. 扫码买单不需要人,用小程序。

卖菜的大妈很开心:现在大家都自助了,工作变轻松。

我不知道该怎么告诉她:这份工作,马上就要消失了。

这一幕让我想到许多东西。

不只是沃尔玛,这个世界最新一批的互联网公司在推进这一些炽热的变革,这是新的浪潮。

不只是卖菜大妈,还有许多传统行业的员工,甚至是传统互联网公司的员工,都会成为这一浪潮的受害者。

未来已来,事情在发生一些变化。

(一)抖音和微视

未来已来。

以技术做驱动,用算法做决策的公司正野蛮生长,让老牌的互联网巨头心生惶恐。

用算法替代人,这事正在发生。

说抖音和微视,刚刚,我去搜索了这两家的招聘需求。

2018-12-18-10-01-12
2018-12-18-10-01-20

根据搜索结果不严谨的对比,可以得出:

微视:总计28个职位描述,9个技术类,8个产品/项目类,2个市场类,9个内容编辑类。

抖音:总计59个职位描述,40个技术类,5个产品/设计类,1个市场/销售类,14个运营/编辑类。

这的确像腾讯的作风,虽然有着足够庞大的用户数据,包含一个人的方方方面,但各个部门之间的数据并不打通。

在算法上,各团队常去做重复工作,这和它的内部赛马机制不无关系:对内孵化也好,对外投资也好,腾讯都只做两件事:给钱,给流量。一个项目,多个团队去做。谁成了,算谁的。典型如微信,王者荣耀,都是这样诞生。

一个经典的吐槽是公众号体系,如果你去注册腾讯的公众号,你能发现:微信公众号、企鹅号、QQ公众号三大体系,彼此数据互不相通,许多媒体人要把一个稿件发生这三个平台,因为它们分属于三个不同的团队。

腾讯会花比较多的精力,做产品、运营、交互设计。他们看中用户体验,或说“产品经理,人为的用户体验”。

其中运营,很多时候工作内容是:流量。

内部合作流量,外部投放流量……等等。

然后招聘需求,就如你所见。

最后的结果,引用最近的一篇文章《全面反思腾讯的战略》,里面是这样描述的:

……近两年由于抖音发展非常迅猛,腾讯下了很大决心重启微视,抽调精兵强将,并出重金奖励优质内容(曾有传言说本年度会补贴30亿元),同时通过QQ、QQ空间、大王卡以各种奖励形式强推微视,上个月还把时下最火爆的综艺节目《创造101》的点赞机制引入微视,可以说传统上最强的拉新手段全都用上了,效果如何呢?

曾经有几天时间上了iOS免费榜的前几名,但可惜昙花一现,很快又跌回到100名以外。为什么效果这么差呢?最重要的原因是微视的算法还不行,用户画像还不精准,内容与用户的匹配并不精准,微视用户的粘性就培养不起来。

同样的内容,在抖音的分发效果就比在微视里要好得多。腾讯强推微视的决心不可谓不大,但是在算法没有突破的情况下,再砸钱,哪怕是100亿,其实都是扔到水里去的。

但是在抖音,是另一种做事方式。

据报导,2017年时,公司一共有1500名工程师,其中算法工程师占了800名,而且还表示愿意以300万美元的薪水(主要是期权)招聘最顶尖的算法工程师。

最后的结果显而易见,抖音占据了很长一阵app store的免费排行榜第一名。

而身边很少有人提起微视。

在今日头条的早期,就有说法:这家公司,没有编辑,一切基于算法。

直到后来,迫于政策压力。才加了编辑,但主要工作是负责审核敏感内容。薪资是非常低的,而且远离总部。这和其他门户网站的人力结构,完全不同。

(二)三个结论

我们可以得到三个结论。

  1. 替代就是替代,不需要通过模仿。

    之前我们看新闻,阿尔法狗围棋击败人类,人工智能玩dota击败准职业玩家。

    我们一方面担心被人工智能所替代。一方面我们觉得被替代这一天很遥远:人工智能下围棋行,但距离好多好多领域的生产力,还不行。

    “很遥远”的前提是:人工智能想要模仿人,然后超越人,这很难。因为人的情感,思考都是机器很难模拟的事。

    人类在此,傲慢了。

    因为只要一种生产力比旧的更高效,那么旧的就会被替代。

    算法超越人类,就是超越人类,根本不用模仿人类。

  2. “流量”的技术变革

    关于“流量”问题,在最近的二三十年,有三个明显的阶段。

    (1)第一站,传统媒体大水漫灌

    上世纪九十年代,是报纸、电视媒体的黄金时代。哪家企业占领了央视,哪家企业的次年销量必然爆炸。这是最早期,人们接触的媒介单一。

    那段时光,媒体、广告公司是最风光的地方。大把人才都在那里。

    年纪大一些的朋友可能还记得这些名字:孔府宴酒,秦池酒,爱多VCD, 步步高……

    (2)第二站,有人开始思考场景和体验

    在此,独领风骚的会是产品经理,他们开始思考“场景”,思考“交互”——我觉得用户在这种情况下,应该怎样,才会有更好的体验。
    2018-12-18-10-12-12
    (▲“如果你是微信的产品经理/交互设计师,请为微信的看一看做一次改版”——这是腾讯内部的一节产品经理基础课)

    这依赖天才型的产品经理出现。如马化腾,张小龙,乔布斯……

    他们负责思考:我觉得用户在这种情况下,应该怎样,才会有更好的体验。

    甚至,他们说:用户不知道自己想要什么,我来定义用户想要什么。

    定义用户想要什么。而且还定义成功了,就是天才。

    做产品,要依凭“用户觉得这个更好”,而不能依凭“我觉得,用户会觉得这个更好”。

    那么,如何感知到“用户觉得”?三种方式:

    ① 和用户谈。

    ② 自己作为用户,去亲身体验。

    ③ 用户的行为数据。

    传统的互联网公司,是利用 ① 和 ② 的,他们把这叫做“用户调研”。

    他们用“真正的聪明人,都在下笨功夫。”来赞美优秀的产品经理。意思是越是聪明,越是经验丰富,就越要走进用户,去了解他们。

    不然,容易陷入经验判断——“我觉得,用户会觉得”。

    而这种判断,很多时候都不可信。

    这是因为,用户的行为数据收集得不够多,不够好,算法设计得不够漂亮。他们相信自己眼睛和心的判断,胜过数据算法的判断。

    但是,数据会变好,因为它变好的速度比人的成长速度更快。

    当它变得比人的经验判断更可信,我们会来到第三站。

    (3)第三站,算法驱动。

    我们前面谈的微视、抖音、头条案例正是如此。

    他们可能会更多地思考:如果你是微信的算法工程师,请为微信的看一看做一次改版。

    这就会更多从数据取样,数据利用,算法搭建的层面去做设计。

    这是一种变化:

    ① 产品思考场景和交互;工程师去实现;用户给反馈;返回第一步。

    ② 工程师设计算法;工程师索要数据;产品思考如何拿到数据;产品设计场景和交互;工程师去实现;数据给反馈;返回前面的某一步。

    后面,我们还会接着举例。

  3. 技术变革发生在当下

    当算法的能力越来越强,直到有天它突破一个阈值,这个阈值是人类工作的平均效果。

    那么算法,就会在一瞬间,摧枯拉朽地干掉大部分人的工作。

    而剩下的那一小撮人,也会被算法一点点干掉。

    因为算法的进化速度,比人类的学习速度更快。

    旧的生产力,被摧枯拉朽地替代掉。这种事,在人类历史上,尤其是近几年,已经发生了太多次。

    弄死一个钱包生产公司的不是一个更好的钱包公司,是微信支付和支付宝。

    人们不再需要钱包。

    弄死服装店的不是一个更大的服装店,是淘宝。

    人们开始去线上消费。

    事情在一开始是温和的:一些公司,开始更努力地招聘算法工程师。

    就像现在,正发生的事情。

    许多人今天不喜欢今日头条,觉得它low。

    但这就像多年前我们看腾讯,说它抄。腾讯的本质是产品驱动,是社交。

    今日头条的本质是字节跳动,是算法。

    他们的公司名已经说明一切:字节跳动。而字节,是计算机数据最基础的组成单元。

(三)一个预告

这篇稿件我们讲了许多内容,但核心就一句:算法替代人,发生在当下。

我会在下一篇里去讲:

如果被替代是不可逃避的宿命。那么作为个体,应该如何应对此事。——拥抱技术。

(四)补一个案例

补充一个案例,Netflix。

可能你没听说过它,简单说就是拍《纸牌屋》的那家。

但这家公司不简单,在今年6月它的市值最高超过1800亿美元,市盈率超过300倍。

与之对比,腾讯今天的市值换算美元大概是4000多亿,京东480多亿,阿里4300多亿。

即便是同行业,传统的剧透迪士尼,市值是1680亿美元。

2018-12-18-10-21-03

这是关于市盈率的解释。一般的科技公司市盈率就几十。

但netflix能到三百。

背后的含义是一边是高风险,另一边是:它被资本高估,资本喜欢它。

那么问题来了,这样一个娱乐巨头做的是什么生意?

我用大家比较容易理解的方式来总结,它是:今日头条+爱奇艺+豆瓣。

netflix最早是做租碟生意的。后来,转型成现在的样子。

它给人看剧,也自制剧,比如纸牌屋这种剧。这是它像爱奇艺的地方。

不同之处是它的所有用户,都是付费用户。只不过你有一个月的免费试用。

然后它也像豆瓣(豆瓣电影)。让你写评论,让你给打分。

最后,是它做了非常好的推荐算法。根据你所看过的,根据你的喜好,根据你的身份信息……去推荐给你内容。这是它像今日头条的地方。

2018-12-18-10-21-29

我花了很多篇幅,去讲这家公司的状态。现在要去讲它用算法做了哪些事。

  1. 利用算法,干预内容选择和生产。

    导演大卫•芬奇曾拿着《纸牌屋》的改编剧本,找过美国多家电视台,却没有一家敢掏钱,谁也说不准一部20年前的老剧是否还有市场。

    Netflix进行了“电视剧消费习惯数据库”分析,他们发现:喜欢观看1990年BBC版本《纸牌屋》的观众,同样是《社交网络》、《七宗罪》鬼才导演大卫•芬奇的拥趸同时,他们还是奥斯卡影帝凯文•史派西的忠实影迷。有了强大的大数据分析支持,Netflix已经完全可以预测受众和市场的反应,将原版《纸牌屋》的粉丝和凯文•史派西与大卫•芬奇的粉丝整合在一起,投拍新版《纸牌屋》,一炮而红。

    他们统计“暂停/快进”来寻找剧情尿点,利用“分享/回放”寻找传播点,干涉剧情创作。

  2. 利用算法,做兴趣推荐。

    Netflix一直举办大型比赛招贤纳士,来提高自己的数据挖掘处理能力。2005年底,Netflix设立百万美元奖金征集能使其推荐系统性能上升10%的算法和架构。最终,一个由工程师、统计学家、研究专家组成的团队BPC夺得了百万奖金,成功地将Netflix影片推荐引擎的推荐效率提高了10%。

    与利用算法相对应。许多时候,也是算法在利用人。

    人需要效益,算法需要数据——大量的、便于计算的数据。

netflix也做了很多努力,来喂数据给算法。

  1. 基础设施建设

    2010年,Netflix完成了两次数据迁,移一次是将Netflix数据中心迁移到亚马逊ASW之上,另一次就是将Oracle数据库迁移到SimpleDB。到了2011年,又从SimpleDB迁移到Cassandra,利用Cassandra提供的路由配置,集群可以被部署在多个大洲。

  2. 产品形态的修改

    他们干掉了五星打分机制,改成了好和不好,单一判断。

    他们取消用户评论功能。

    这样做,都是为了数据更加干净,减少干扰因素。

    这在传统的产品经理眼里,都属于大胆的决策。

    但netflix做了,因为出发点不同。netflix要规整的数据,喂给算法,让算法来生产效益。

    他们信任算法,更胜过人的判断。

    然后,他们获得成功。

“未来已来(一)——技术变革”的178,971个回复

  1. 我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪我的评论啊 在哪

  2. 我在这里评论一下 啊哈哈哈哈哈哈哈啊哈哈哈

  3. wowowowowowowowoowowowowowowowowowowowowowowowowowowowoowowowowowowowowowoowoowowowowowwow

发表评论